Introduction

- Concrete resistivity is a geometry-independent material property that describes the electrical resistance, which is the ratio between applied voltage and resulting current in a unit cell.
- The dimension of resistivity is resistance multiplied by length, its unit usually is in Ω -m.
- Resistivity of concrete may vary over a wide range, from 10^1 to 10^5 Ω -m, depending on the moisture content of the concrete (environment) and its composition (material).
- In concrete, the current is carried by ions dissolved in the pore liquid.
- More pore water (wet concrete) as well as more and wider pores (high water to cement ratio) cause a lower resistivity.

By: Dr. Shamshad Ahmad

RESISTIVITY MAPPING

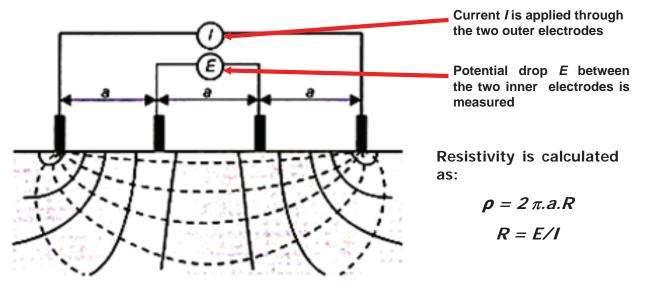
Introduction---continued

- Resistivity mapping does not show whether steel in concrete is actively corroding. This information must be obtained using other methods, such as chloride profile analysis, carbonation depth, potential mapping, etc.
- Resistivity of concrete is related to the following two principal stages in the service life of a structure:
 - the initiation period (low resistivity fast chloride penetration)
 - the propagation period (low resistivity high corrosion rate)
- Thus, locations within a structure having low electrical resistivity possess high chloride penetration and high corrosion rate
- The choice between local and more general repair measures can be based on the distribution of the expected corrosion rates.
- If maintenance actions are taken, resistivity and its distribution are important for electrochemical repair methods.

Principle of Resistivity Measurement

- Resistivity of the near-surface concrete of a given concrete structure can be measured non-destructively using electrodes placed on the concrete surface
- This requires at least two electrodes, one of which may be a reinforcing bar.
- A voltage is applied between the electrodes, and the resulting current is measured (or vice-versa).
- The ratio of voltage to current gives a resistance (in Ω)
- The resistivity is obtained by multiplying the measured resistance by a conversion factor, called the cell constant (in m)
- Temperature changes affects concrete resistivity because temperature influences ion mobility, ion-ion and ion-solid interactions
- Overall, a temperature increase causes a decrease of electrical resistivity and vice-versa.

By: Dr. Shamshad Ahmad

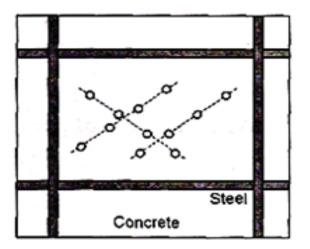

RESISTIVITY MAPPING

Methods of Resistivity Measurement

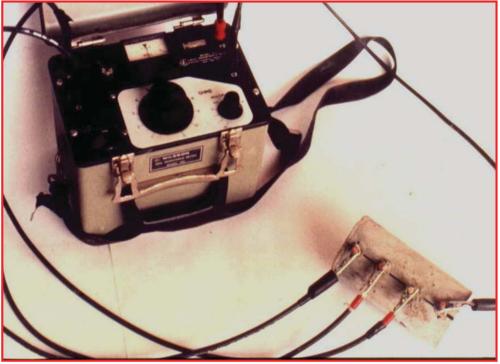
- Resistivity of concrete can be determined using the following methods:
 - Wenner four-probe method
 - Two-probe method
 - Disc method
 - Core-clamping method

Wenner Four-Probe Method of Resistivity Measurement

Resistivity of concrete is measured non-destructively using Wenner's probe electrodes placed on the concrete surface, as shown in Figure below:

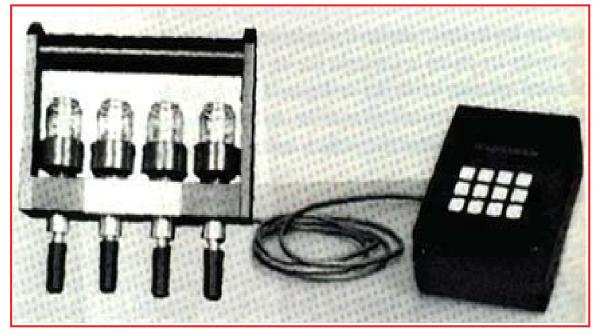

By: Dr. Shamshad Ahmad

RESISTIVITY MAPPING


Wenner Four-Probe Method -----continued

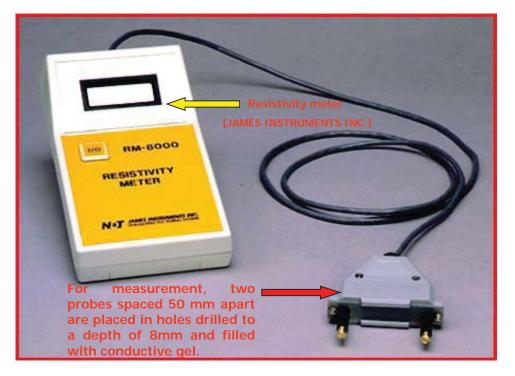
Notes:

- Spacing of the probe electrodes *"a"* should be greater than the maximum size of aggregate.
- Positioning of Wenner's probe electrodes on the concrete surface should be in the way as shown in Fig. below, in order to stay as far as possible from the rebars.


RESISTIVITY MAPPING Wenner Four-Probe Method -----continued

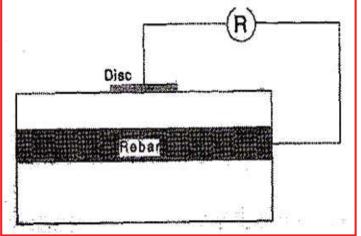
Resistivity measurement using Wenner four-probe method

By: Dr. Shamshad Ahmad


RESISTIVITY MAPPING Wenner Four-Probe Method -----continued

Portable four-probe resistivity equipment

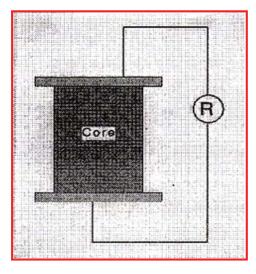
By: Dr. Shamshad Ahmad


RESISTIVITY MAPPING Two-Probe Method of Resistivity Measurement

RESISTIVITY MAPPING

Disc Method of Resistivity Measurement

- This method involves an electrode (disc) placed on the concrete surface over a rebar and measuring the resistance between the disc and the rebar.
- It requires a connection to the reinforcement cage and full steel continuity, as shown in Figure below:



- The resistance (R) measured can be converted to resistivity using a cell constant that depends on the cover depth and the rebar diameter
- For cover depths, disc and bar diameters being 10 to 50 mm, the cell constant is about 0.1 m
- So the resistivity measured using a disc electrode is about:

$$\rho = 0.1 \times R (\Omega - m)$$

Core-Clamping Method of Resistivity Measurement

- It may be useful to take core samples from the structure and expose them in the laboratory in standardized conditions to determine the potential resistivity (i.e., the resistivity in saturated conditions)
- Core samples with two faces cut parallel are exposed in a fog room and potential resistivity is measured using metal plates , as shown in Figure below:

The resistivity is as follows: $\rho_{concrete} = R_{measured} \times A/L$ Where: $\rho_{concrete} = resistivity (in \Omega-m)$ $R_{measured} = R$ between the plates (in Ω) A = area of the core face (in m²) L = length of the core (in m)

By: Dr. Shamshad Ahmad

RESISTIVITY MAPPING

Interpretation of Resistivity Test Results

- It may be useful to compare the resistivity measured on a structure to the data of similar concrete types.
- For this purpose, some reference values from laboratory studies are given in Table below, depending on the cement type and exposure:

Global reference values of resistivity for dense aggregate concrete at 20°C (age >10 years)

Environment	Concrete resistivity Querran	
	Ordinary Portland cement	Blast furnace slag cement (>65% slag) or fly ash (25%) or silica fume (>5%)
Very wet, submerged, splash zone, [fog room]	50-200	300-1000
Outside, exposed	100-400	500-2000
Outside, sheltered, coated, hydrophobised (not carbonated) [20 °C/80% RH]	200-500	1000-4000
AS above but carbonated	100 and higher	2000-6000 and higher
Indoor climate (carbonated) [20 °C/50% RH]	3000 and higher	4000-10,000 and higher

Interpretation of Resistivity Test Results--continued

- The absolute value of the resistivity measured on a structure can be interpreted as follows:
 - If the cement type is known, the observed resistivity is compared to the reference value for that cement type in the relevant exposure conditions, as shown in previous Table
 - If, for example, a wet structure made with OPC has a mean measured resistivity of 50 Ω -m, it means that the water-to-cement ratio must be quite high.
 - The risk of corrosion is relatively high if, for example de-icing salts are present.

Note:

The resistivity data must be corrected for temperature effects. In general, one °K of temperature change causes a change of 3 to 5% (other factors remaining constant).

By: Dr. Shamshad Ahmad

RESISTIVITY MAPPING

Interpretation of Resistivity Test Results--continued

- If the concrete composition is relatively homogeneous, mapping the resistivity may show wet and dry areas
- If an OPC structure has resistivity values between 100 and 500 Ω -m, the extreme values can be interpreted as indicating relatively wet and relatively dry areas
- If, on the other hand, the exposure (so the moisture content) is relatively uniform, variations in resistivity (say from 50 to 200 Ω -m) can be interpreted as caused by local variations in the water-to-cement ratio
- Areas with 50 Ω -m will be more susceptible to penetration of chloride from the environment than areas with 200 Ω -m.

Interpretation of Resistivity Test Results--continued

• The results of concrete resitivity measurements can be used for a quantitative or qualitative interpretation of reinforcement corrosion, as summarized in Table below:

Concrete resistivity, Q.m	Risk of corrosion
<100	High
100-500	Moderate
500-1000	Low
>1000	negligible

• However, resitivity values are normally used to determine the corrosion risk only when the information on half-cell potential or chemical analysis is available